Electrically Driven Reversible Insulator-Metal Phase Transition in Ca$_2$RuO$_4$

Nikhil Shukla1, Matthew Jerry4, Hari Nair2, Michael Barth3, Darrell G. Schlom2, Suman Datta1

1University of Notre Dame, Notre Dame, IN 46656, USA
2Cornell University, Ithaca, NY 14853, USA
3The Pennsylvania State University, State College, PA 16801, USA

Email: nshukla@nd.edu / Phone: (814) 777-8997

Introduction: Insulator-metal transitions (IMTs) are the subject of intense fundamental and applied research including their potential applications in electronic devices like coupled relaxation oscillators [1], neuromorphic devices [2], Phase FETS [3], and RF switches [4]. A key requirement for practical device application of IMT materials is that the IMT temperature (T_{IMT}) should be greater than 358 K (85°C) which is the operating temperature of electronic chips (Fig. 1). In this work, we investigate the electrically induced IMT in epitaxially grown 0.3% tensile strained Ca$_2$RuO$_4$ thin films wherein strain engineering increases the transition temperature (T_{IMT}) to more than 550K from a bulk value of ~357K ($\Delta T_{IMT} >190$K). Using systematic DC and transient I-V measurements, we show that the origin of the electrically induced IMT in Ca$_2$RuO$_4$ is current induced self-heating.

Experiment: Ca$_2$RuO$_4$ which belongs to the Ruddlesden-Popper series (Ca$_{n+1}$Ru$_n$O$_{3n+1}$ with n=1) exhibits an IMT at 357K (bulk) accompanied by an abrupt change in resistivity up to ~22x [5]. To further increase the T_{IMT} beyond 357K, we grow 20nm tensile strained Ca$_2$RuO$_4$ thin films on (110) NdGaO$_3$ using molecular beam epitaxy. The epitaxial growth of Ca$_2$RuO$_4$ on (110) NdGaO$_3$ induces a tensile strain of 0.3%, and increases T_{IMT} > 550K (maximum temperature range of the measurement setup) as shown in Fig. 2: the X-Ray Diffraction spectrum is shown in Fig. 3. This high value of T_{IMT} meets the temperature requirement for chip operation. The DC I-V characteristics of the two-terminal Ca$_2$RuO$_4$ devices shown in Fig. 4 exhibit non-linear behavior associated with the reduction in resistance across the IMT. While the voltage-mode I-V measurement shows an abrupt transformation in current associated with the IMT (along with hysteresis), the current-mode measurement exhibits a continuous negative differential resistance (NDR) across the phase transition, with no hysteresis. The abrupt current jump and hysteresis observed in the voltage-mode (in contrast to the current-mode) can be attributed to the additional joule heating (thermal runaway) that occurs when the resistance of the Ca$_2$RuO$_4$ device reduces across the IMT; no additional joule heating due to resistance reduction occurs in the current mode. The temperature dependent I-V characteristics shown in Fig. 5 reveal that the IMT can be electrically induced in Ca$_2$RuO$_4$ even at 373K (100°C), and the evolution of the switching voltage and critical current associated with the IMT as a function of temperature is shown in Fig. 6.

To investigate the origin of the electrically induced IMT in Ca$_2$RuO$_4$, we perform transient I-V characterization using the setup shown in Fig. 7. Triangular ramp pulses with a peak amplitude of 8V and a pulse width (τ) ranging from 5ms to 1µs are applied, and the output voltage (V_{out}) is measured across the series resistance R_S ( 680 Ω). Figure 8 shows the evolution of the output voltage V_{out} for τ = 1 ms, 100µs, and 1µs. It can be observed that non-linearity in the output, and consequently peak output voltage V_{peak} decreases with τ (Fig. 10) indicating an incomplete IMT for shorter pulses. In fact, the absence of non-linearity in the output for τ=1 µs indicates the complete absence of the IMT. The corresponding I-V characteristics for the transient response shown in Fig. 9 also reflect the absence (or the incomplete nature) of the IMT process in Ca$_2$RuO$_4$ at shorter pulse widths (τ).

The strong sensitivity of the resistance non-linearity (induced by the IMT) to the time period τ of the applied pulse implies that the phase transition in Ca$_2$RuO$_4$ is electro-thermal in nature [6], and is driven by current induced self-heating of the Ca$_2$RuO$_4$ channel. Figure 11 shows the input energy supplied to the two-terminal device as function of τ. With reducing τ, the input energy (that gets converted to heat) also reduces, causing insufficient self-heating to initiate the IMT (e.g. τ=1 µs). Further, we note that the peak electric field across the device (corresponding to V_{in}=8 V) almost remains constant further suggesting that the IMT in Ca$_2$RuO$_4$ is not purely driven by the electric-field.

Conclusion: In summary, we have investigated the electrically induced IMT in Ca$_2$RuO$_4$ thin films whose transition temperature has been increased by >190 K (T_{IMT} > 550K) using epitaxial strain engineering. We show using DC and transient I-V measurements that the electrically induced phase transition is electro-thermal in nature, and is driven by current induced self-heating.

This work

Fig. 1 | Transition temperature (T_{IMT}) for various IMT materials. Practical device application requires $T_{\text{IMT}} > 358K$ (85°C).

Fig. 2 | Typical Resistivity vs. temperature characteristics for Ca$_2$RuO$_4$ on (110) NdGaO$_3$ (blue). Strain shifts $T_{\text{IMT}} > 550K$.

Fig. 3 | XRD spectrum of the epitaxially grown Ca$_2$RuO$_4$ films grown on (110) NdGaO$_3$ (0.3% tensile strain).

Fig. 4 | I-mode and V-mode two-terminal I-V characteristics showing the IMT in Ca$_2$RuO$_4$. L=15 µm; W=40µm; T= 303K.

Fig. 5 | Temperature dependent I-V characteristics showing the IMT in Ca$_2$RuO$_4$. L=15 µm; W=40µm.

Fig. 6 | Evolution of switching voltage and critical switching current for the IMT with temperature.

Fig. 7 | Schematic of the pulse measurement setup and the input pulse. V_{out} is measured across $R_{S} (= 680 \Omega)$. L=750 nm; W=2µm.

Fig. 8 | Output voltage (V_{out}) as a function of pulse width ($\tau = 1ms, 100 \mu s, 1 \mu s$). The non-linear voltage evolution associated with IMT is not observed at smaller pulse widths.

Fig. 9 | Transient I-V characteristics as a function of the pulse width (τ).

Fig. 10 | Evolution of V_{peak} with pulse width (τ).

Fig. 11 | Input energy supplied to the device as a function of τ. Reducing the input energy (thermal) fails to initiate the IMT.